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Abstract  

The scope of this note encompasses an extension of common fixed-point results from their 

initial establishment in complex-valued metric spaces to the realm of complex-valued fuzzy 

metric spaces. By adopting a nuanced approach, these outcomes are further demonstrated 

within the context of complex-valued fuzzy metric spaces, focusing on employing more lenient 

contractive criteria. Building upon the groundwork laid by previous researchers and 

considering a range of other relevant studies, our current research makes significant strides in 

enhancing and expanding upon their findings. While these prior works have primarily focused 

on complex-valued metric spaces, our study takes a significant leap forward by applying their 

insights to complex-valued fuzzy metric spaces. This extension of previous research deepens 

our understanding of these intricate spaces and opens up new avenues for exploring the 

complexities inherent in such settings. To enhance the clarity of our core findings, we offer 

illustrative examples that lend visual support to our assertions.   
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Introduction  

The foundation of fuzzy set theory was laid by Zadeh [1] in 1965, marking the inception of a 

concept that has since undergone extensive development by numerous scholars [2-4]. Among 

these contributions, Kramosil and Michalik [5] notably introduced the innovative notion of 

fuzzy metric spaces, adding a significant layer of complexity to the evolving landscape of this 

field. Subsequent refinements to the theory were introduced by George and Veeramani [6], 

while Grabiec [7] delved into an in-depth exploration of fixed-point theory within the realm of 

fuzzy metric spaces. Results proved by the authors in [5-7] were basic, conceptual, and 

important in fixed point theory under metric and fuzzy metric spaces. Many researchers (see 

[8-12]) have proved results on common fixed points using the theory given in [5-7] in the 

setting of metric spaces, F- metric spaces, S- metric spaces, and MIFM- spaces.    

The inception of CVMS can be attributed to the pioneering work of Azam and his collaborators 

[13]. Building upon this foundation, Verma and his associates [14] have more recently 

contributed to the field by introducing significant advancements, such as the ‘max’ functions, 

a partial order relation, and the delineation of properties (E-A) and CLRg tailored for complex 

numbers. These innovative developments have played a crucial role in substantiating fixedpoint 

theorems within the domain of CVMS. Pioneering the concept of CVFMS, Singh, and team 

[15], Sharma and Sharma [16] embarked on a groundbreaking endeavor, formulating intricate 

adaptations of diverse metric space outcomes within this novel framework.  

In a recent exploration, H.M. Shrivastava and collaborators [17], investigated a fuzzy version 

of a system of general random differential equations. The findings from this investigation offer 

valuable insights for modeling dynamical systems, particularly in addressing environmental 

challenges such as air pollution. Recently, Z. Eidinejad, R. Saadati, and H.M. Shrivastava [18] 

approximated a Cauchy additive mapping within a fuzzy Banach space (FBS) by applying a 

new class of fuzzy control functions. Furthermore, P. Debnath and H.M. Shrivastava [19], 

extended Kannan's fixed point theorem to the realm of multivalued maps, employing 

Wardowski's F-contraction. The methodology and results of their study are intriguing and hold 

the potential for addressing various types of fuzzy equations and solving integral equations in 

the future. Most recently, P.K. Sharma et al. [20] applied fuzzy fixed point theory to dynamical 

systems.  

In the field of CVFMS, the measurement of distances between points is characterized by using 

complex-valued fuzzy numbers, diverging from the conventional employment of real numbers. 

Complex-valued fuzzy metric spaces have applications in various fields. Some notable 

applications include Quantum Mechanics, Image Processing, Control Systems, Machine 

Learning, Robotics, etc. These applications highlight the versatility of complex-valued fuzzy 

metric spaces in dealing with complex data types and uncertainty, making them a valuable tool 

in various scientific and engineering disciplines. Investigating common fixed points within 

CVFMS yields valuable insights into the functional dynamics operative within these spaces. 

This line of inquiry holds significant relevance across diverse domains, including engineering 

and physics, where the employment of complex-valued functions for modeling physical 

systems underscores the practical utility of such findings.  
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Our present study builds upon the foundational work established by prior researchers, including 

the contributions of S. Ali [21] and R.K. Verma et al. [14]. Furthermore, we have considered a 

wide spectrum of pertinent studies in the field. In doing so, our current research extends and 

significantly advances their findings. This paper aims to extend and illustrate established 

metric-space outcomes in the CVFMS context, thereby enhancing these results' 

generalizability.  

Preliminaries  

Definition 2.1.[13]. Let 𝜔1, 𝜔2 ∈ ℂ, where 𝜔 = 𝜇 + 𝑖𝜈. Then, a partial order relation ‘≲ ‘ is 

established on ℂ in the following manner:  

𝜔1 ≲ 𝜔2 ⇔Re(𝜔1) ≤Re(𝜔2) and Im(𝜔1) ≤Im(𝜔2)  

Hence 𝜔1 ≲ 𝜔2 if one of the following gets satisfied.  

(PO1) Re(𝜔1) =Re(𝜔2) and Im(𝜔1) =Im(𝜔2)  

(PO2) Re(𝜔1) <Re(𝜔2) and Im(𝜔1) =Im(𝜔2)  

(PO3) Re(𝜔1) =Re(𝜔2) and Im(𝜔1) <Im(𝜔2)  

(PO4) Re(𝜔1) <Re(𝜔2) and Im(𝜔1) <Im(𝜔2)  

In particular, 𝜔1 ⋦ 𝜔2 if 𝜔1 ≠ 𝜔2 and one of (PO2), (PO3), and (PO4) gets satisfied, and 𝜔1 ≺ 

𝜔2 if only (PO4) is satisfied.  

It can be noted that;  

0 ≲ 𝜔1 ⋦ 𝜔2 ⇒ |𝜔1| < |𝜔2|,  𝜔1 ≲ 𝜔2, 𝜔2 ≺ 𝜔3 ⇒ 𝜔1 ≺ 𝜔3.  

Definition 2.2.[13].  Let 𝑋 ≠ ∅. Assume that  𝑑: 𝑋 × 𝑋 → ℂ satisfies:  

(CV1) 0 ≲ 𝑑(𝔩, 𝔪),  for all 𝔩, 𝔪 ∈ 𝑋 and 𝑑(𝔩, 𝔪) = 0 iff 𝔩 = 𝔪 ;  

(CV2) 𝑑(𝔩, 𝔪) = 𝑑(𝔪, 𝔩),  for all  𝔩, 𝔪 ∈ 𝑋 ;  

(CV3) 𝑑(𝔩, 𝔫) ≲ 𝑑(𝔩, 𝔪) + 𝑑(𝔪, 𝔫),  for all  𝔩, 𝔪, 𝔫 ∈ 𝑋 

Then(𝑋, 𝑑) is called a CVMS.  

Definition 2.3.[14]. The maximum function with partial order relation (POR) ‘≲’ is defined 

as  

(1) max {𝔭, 𝔮} = 𝔮 ⇔ 𝔭 ≲ 𝔮  

(2) 𝔭 ≲ max {𝔮, 𝔯} ⇒ 𝔭 ≲ 𝔮 or 𝔭 ≲ 𝔯  

(3) 𝔭 ≲ max {𝔭, 𝔮} ⇒ 𝔭 ≲ 𝔮   

For any 0 ≲ 𝔭, 0 ≲ 𝔮 we can show |max{𝔭, 𝔮}| = max{|𝔭|, |𝔮|}  



2024 406(12 )

199

The min functions can be defined as   

(1) min {𝔭, 𝔮} = 𝔭 ⇔ 𝔭 ≲ 𝔮  

(2) min {𝔭, 𝔮} ≲ 𝔯 ⇒ 𝔭 ≲ 𝔯 or 𝔮 ≲ 𝔯  

(3) min {𝔭, 𝔮} ≲ 𝔮 ⇒ 𝔭 ≲ 𝔮   

For any 0 ≲ 𝔭, 0 ≲ 𝔮 we can show |min{𝔭, 𝔮}| = min{|𝔭|, |𝔮|}  

Example 2.1. let us illustrate the maximum function with the partial order relation (POR) '≲' 

on the set ℂ of complex numbers using some numerical examples.  

Suppose ℂ = {2 − 3𝑖, 4 + 2𝑖, 1 − 𝑖, 5 + 4𝑖}.We define the partial order relation '≲' using the 

"max" function as follows:  

For any two complex numbers 𝑥 and 𝑦 in ℂ, 𝑥 ≲ 𝑦 ⇔ max(𝑥, 𝑦) = 𝑥. Now, let us apply this 

relation to pairs of complex numbers:  

Is (2 − 3𝑖) ≲ (4 + 2𝑖)?As, max(2 − 3𝑖, 4 + 2𝑖) = 4 + 2𝑖 , so (2 − 3𝑖) ≲ (4 + 2𝑖).  

Similarly, we have  (1 − 𝑖) ≲ (5 + 4𝑖),(4 + 2𝑖) ≲ (5 + 4𝑖), and (2 − 3𝑖) ≲ (5 + 4𝑖).  

As we can see from these examples, the "max" function with the partial order relation '≲' 

compares complex numbers based on which one is greater according to the "max" function. If 

max(𝑥, 𝑦) = 𝑥, then 𝑥 is considered ≲ 𝑦.   

Remark 2.1. To determine whether the "max" function with a partial order relation '≲' on the 

set of complex numbers forms an equivalence relation. We need to consider the properties of 

an equivalence relation: reflexivity, symmetry, and transitivity. An equivalence relation must 

be reflexive, which means that for all elements 𝑥 in the set, 𝑥 ≲ 𝑥 must hold. Using the "max" 

function, we have max(𝑥, 𝑥) = 𝑥. This shows that the '≲' relation is reflexive because 𝑥 ≲ 𝑥 

holds for all complex numbers 𝑥. An equivalence relation must be symmetric, meaning that if 

𝑥 ≲ 𝑦, 𝑦 ≲ 𝑥 must also hold. In this case, using the "max" function, we have: If max(𝑥, 𝑦) =𝑥, 

then max(𝑦, 𝑥) = 𝑥. This shows that the '≲' relation is symmetric because if 𝑥 ≲ 𝑦, then 𝑦 ≲ 𝑥 

also holds. An equivalence relation must be transitive, which means that if 𝑥 ≲ 𝑦 and 𝑦 ≲ 𝑧, 

then 𝑥 ≲ 𝑧 must be valid. In this case, using the "max" function, we have: If max(𝑥, 𝑦) = 𝑥 and 

max(𝑦, 𝑧) = 𝑦, then max(𝑥, 𝑧) = 𝑥. This demonstrates the transitivity of the '≲' relation, as when 

𝑥 ≲ 𝑦 and 𝑦 ≲ 𝑧, it follows that 𝑥 ≲ 𝑧. Thus, the "max" function, is an equivalence relation. 

Similarly, we can show the "min" function is also an equivalence relation.  

Remark 2.2. max {𝔭, 𝔮} selects the complex number that is further from the origin in the 

complex plane. It does not consider the real or imaginary part of the numbers; it solely 

compares their distances from the origin. In essence, min {𝔭, 𝔮}selects the complex number 

closer to the origin in the complex plane, irrespective of their real or imaginary parts. In 

summary, the 'max' function and 'min' function on the complex plane operate based on the 

magnitudes (distances from the origin) of the complex numbers and choose the number that is 

either the maximum or minimum in terms of magnitude, respectively. They do not consider the 

angles or phases of the complex numbers in the complex plane.  
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After Zadeh's [1] seminal work on fuzzy set theory, a cadre of scholars [2-4] contributed to this 

field's core and foundational principles. The pioneer in introducing the theory of fuzzy complex 

numbers was Buckley [22]. Inspired by Buckley's work, other researchers carried forward the 

investigation into fuzzy complex numbers. Within this progression, Ramot et al. [23] extended 

the realm of fuzzy sets to encompass complex fuzzy sets. Drawing inspiration from the 

groundwork laid by Ramot et al. [23], Singh et al. [15] embarked on an exploration that led to 

the formulation of CVFMS. They constructed these spaces by employing continuous t-norms 

as a cornerstone, crafting a Hausdorff topology underpinning their structural integrity. 

Furthermore, they introduced the innovative concept of Cauchy sequences within the realm of 

CVFMS, thereby contributing to a deeper understanding of the intricacies within this novel 

space.  

Within the framework of CVFMS, we establish specific results pertaining to fixed points.  

Definition 2.4.[23]. The set 𝑆 (complex fuzzy), defined over a set 𝑈 (set of the universe of 

discourse), can be expressed as 𝑆 = {(𝑥, 𝜇𝑠(𝑥)): 𝑥 ∈ 𝑈}. Here, the values 𝜇𝑠(𝑥) are confined 

within a unit circle within the complex plane. The function 𝜇𝑠(𝑥) is called the membership 

function and is defined as 𝜇𝑠(𝑥) = 𝑟𝑠(𝑥). 𝑒𝑖𝑤𝑠(𝑥), where 𝑟𝑠(𝑥) and 𝑤𝑠(𝑥) are real-valued, and 𝑟𝑠(𝑥) 

∈ [0,1].  

Definition 2.5. [15]. An operation ∗ : ℂ × ℂ  → ℂ, where ℂ = {𝑧 = 𝑟𝑠𝑒𝑖𝜃: |𝑧| ≤ 1, 𝜃 ∈ 

𝜋 

, is termed a complex-valued continuous t-norm provided it adheres to the following 

conditions:   

(1) ∗ is associative and commutative,   

(2) ∗ is continuous,   

(3) 𝑎  𝑒𝑖𝜃  𝑒𝑖𝜃  ,   

(4)  𝑑 whenever 𝑎  𝑐 and 𝑏 .   

Example 2.2. [15]. The following binary operations defined in (i), (ii), and (iii) are complex 

valued continuous t-norm   

(i) 𝑎  𝑏  min   

(ii) 𝑎  𝑏  max  𝑒𝑖𝜃, 0), for a fix 0 ≤ 𝜃 ≤ π

2
  .  

(iii) 𝑎  𝑏  = {𝑚𝑖𝑛 {𝑎, 𝑏) , 𝑖𝑓 𝑚𝑎𝑥 {𝑎, 𝑏}  =  𝑒𝑖𝜃

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

Definition 2.6. [15].   is said to be CVFMS if a complex-valued fuzzy set 𝑀: 𝑋 × 𝑋 × 

  (where 𝑋 ) fulfills the following criteria:  

(CF1) 𝑀(𝑎, 𝑏, 𝑡) ,   

(CF2) 𝑀(𝑎, 𝑏, 𝑡)  𝑒𝑖𝜃 for all 𝑡  ⇔ 𝑎 = 𝑏,   
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(CF3) 𝑀(𝑎, 𝑏, 𝑡) (𝑏, 𝑎, 𝑡),   

(CF4) 𝑀(𝑎, 𝑏, 𝑡) (𝑏, 𝑐, 𝑠) (𝑎, 𝑐, 𝑡 + 𝑠),   

(CF5) 𝑀   is continuous, for all 𝑎, 𝑏, 𝑐  belong to 𝑋, 𝑠, 𝑡 > 0.  

Singh et al. [15] demonstrated the following results in CVFMS.  

Lemma 2.7 [15]. Let  be a CVFMS such that 𝑙𝑖𝑚𝑡→∞ M (𝑎, 𝑏, 𝑡)  𝑒𝑖𝜃, for all 𝑎, 𝑏  

𝑋, if 𝑀(𝑎, 𝑏, 𝑘𝑡) (𝑎, 𝑏, 𝑡), for all 𝑎, 𝑏  then 𝑎 .  

Lemma 2.8 [15]. A sequence  in a CVFMS  with 𝑙𝑖𝑚𝑡→∞ M(𝑎, 𝑏, 𝑡)  𝑒𝑖𝜃, for 

all 𝑎, 𝑏  𝑋 is said to be Cauchy sequence if  𝑘 which lies on  such that  

𝑀 (𝑏𝑛, 𝑏𝑛   ,  .  

Main section/ results  

In the last fifty years, fixed point theory has evolved into a captivating and versatile field of 

study, finding applications in a wide range of areas, including optimization problems, control 

theory, and differential equations. The fundamental fixed point theorem was originally 

formulated by Banach [24] in 1922.  

The Banach fixed point theorem within CVFMS is reformulated by utilizing the above 

lemmas, originated by Singh et al. [15].  

Theorem 2.1. Let (𝑋, 𝑀,  be a CVFMS with 𝑙𝑖𝑚𝑡→∞M(𝑎, 𝑏, 𝑡)  𝑒𝑖𝜃,  𝑋,  𝑡 > 0.  

Let  𝑇 be a self-map on 𝑋  that satisfies 𝑀(𝑇𝑎, 𝑇𝑏, 𝑘𝑡) (𝑎, 𝑏, 𝑡)  . Then, 𝑇 

possesses a unique fixed point.  

Proof:  

 Let 𝑎0 ∈ 𝑋, and sequence   in 𝑋 defined as 𝑎𝑛   

As, 𝑀(𝑎, 𝑏, 𝑘𝑡) (𝑎, 𝑏, 𝑡)  . Setting 𝑎  𝑎𝑛, we have  

𝑀(𝑎𝑛−1, 𝑎𝑛, 𝑡) = 𝑀(𝑇𝑎𝑛−2, 𝑇𝑎𝑛−1, 𝑡) ≳ 𝑀 (𝒶𝑛−2, 𝑎𝑛−1, 𝑡

𝑘
)  

 This implies that  𝑀(𝑎𝑛−1, 𝑎𝑛, 𝑡) ≳ 𝑀 (𝑎𝑛−2, 𝑎𝑛−1, 
𝑡

𝑘
)  

Hence, {𝑎𝑛} is a Cauchy sequence in 𝑋.  

Now we show this sequence converges to 𝑎 ∈ 𝑋.  

𝑀(𝑎𝑛, 𝑎, 𝑘𝑡) ≳ 𝑀(𝑎𝑛, 𝑎, 𝑡)  

𝑀(𝑎𝑛, 𝑎, 𝑡) ≳ 𝑀 (𝑎𝑛, 𝑎, 𝑡

𝑘
) ≳ 𝑀 (𝑎𝑛, 𝑎, 𝑡

𝑘2 
) ≳ ⋯ ≳ 𝑀(𝑎𝑛, 𝑎, 𝑡

𝑘𝑛)  

Taking 𝑛 → ∞, we have 𝑙𝑖𝑚𝑛→∞ 𝑀(𝑎𝑛, 𝑎, 𝑡)  ≳ 𝑒𝑖𝜃  
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This implies that 𝑎𝑛 → 𝑎 when 𝑛 → ∞.  

Hence, the sequence {𝑎𝑛} converges to 𝑎 in 𝑋.  

Consider, 𝑀(𝑇𝑎, 𝑎, 𝑡) ≳ 𝑀 (𝑇𝑎, 𝑎𝑛+1, 𝑡

2
) ∗ 𝑀 (𝑎𝑛+1, 𝑎, 𝑡

2
)  

 = 𝑀 (𝑇𝑎, 𝑇𝑎𝑛,𝑡

2
)*𝑀 (𝑎𝑛+1, 𝑎, 𝑡

2
) 

≳ 𝑀 (𝑎, 𝑎𝑛, 𝑡

2𝑘
) *𝑀 (𝑎𝑛+1, 𝑎, 𝑡

2
) 

Taking 𝑛 → ∞, we get  𝑀(𝑇𝑎, 𝑎, 𝑡) ≳ 𝑀 (𝑎, 𝑎, 𝑡

2𝑘
) ∗ 𝑀 (𝑎, 𝑎,𝑡

2
) )  

 

This implies that 𝑀(𝑇𝑎, 𝑎, 𝑡) ≳ 𝑒𝑖𝜃 ∗ 𝑒𝑖𝜃 (Or) 

𝑀(𝑇𝑎, 𝑎, 𝑡) = 𝑒𝑖𝜃  

This implies that 𝑇𝑎 = 𝑎.   

Thus, 𝑎 is a fixed point of 𝑇.  

Uniqueness: suppose 𝑇 has another fixed point 𝑏 ∈ 𝑋 and 𝑎 ≠ 𝑏.  

So, 𝑇𝑎 = 𝑎, and 𝑇𝑏 = 𝑏.  

Now, 𝑒𝑖𝜃 ≳ 𝑀(𝑎, 𝑏, 𝑡) = 𝑀(𝑇𝑎, 𝑇 𝑏, 𝑡) ≳ 𝑀 (𝑎, 𝑏, 𝑡

𝑘
)  

≳ 𝑀 (𝑎, 𝑏, 𝑡

𝑘2) ≳ ⋯ ≳ 𝑀 (𝑎, 𝑏, 𝑡

𝑘𝑛)  

This implies that, 𝑒𝑖𝜃 ≳ 𝑀 (𝑎, 𝑏, 𝑡

𝑘𝑛), where 𝑛 ∈ 𝐼+ and 𝑘 ∈ (0,1).  

Taking 𝑛 → ∞ , we have 𝑎 = 𝑏.  

Thus, the fixed point is unique.  

Ali [21] formulated the following theorem within the context of a CVMS, encompassing 

three distinct mappings.  

Theorem A [21]. “Let (X, d) be a CVMS and 𝑆, 𝑇: 𝑋 → 𝑋 be weakly compatible such that   

(i) 𝑆 and 𝑇 satisfy (𝐶𝐿𝑅𝑠) property and  

(ii) 𝑑(𝑇𝑥, 𝑇𝑦) ≲ 𝛼 𝑑(𝑆𝑥, 𝑆𝑦)  for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼, 𝛽 are 

nonnegative reals with 𝛼 + 𝛽 < 1.”  

Pathak et al. [14] introduced the following theorems within the framework of a CVMS, 

involving four distinct mappings.  
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Theorem B [14]. “Let (X, d) be a CVMS and 𝐴, 𝐵, 𝑆, 𝑇: 𝑋 → 𝑋 be four self-mappings 

satisfying:   

(i) 𝐴(𝑋) ⊆ 𝑇(𝑋), 𝐵(𝑋) ⊆ 𝑆(𝑋)   

(ii) 𝑑(𝐴𝑥, 𝐵𝑦) ≲ 𝑘 max { 𝑑(𝑆𝑥, 𝑇𝑦), 𝑑(𝐵𝑦, 𝑆𝑥), 𝑑(𝐵𝑦, 𝑇𝑦)} ∀ 𝑥, 𝑦 ∈ 𝑋, 0 < 𝑘 < 1  

(iii) The pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible,  

(iv) One of the pairs (𝐴, 𝑆) or (𝐵, 𝑇) satisfies the property (E.A.).  

If the range of one of the mappings 𝑆(𝑋) or  𝑇(𝑋) is a complete subspace of X, then 

mappings A, B, S, and T have a unique common fixed point in X.”  

Theorem C [14]. “Let (X, d) be a CVMS and 𝐴, 𝐵, 𝑆, 𝑇: 𝑋 → 𝑋 be four self-mappings 

satisfying:   

(i) 𝐴(𝑋) ⊆ 𝑇(𝑋),  

(ii) 𝑑(𝐴𝑥, 𝐵𝑦) ≲ 𝑘 max{𝑑(𝑆𝑥, 𝑇𝑦), 𝑑(𝐵𝑦, 𝑆𝑥), 𝑑(𝐵𝑦, 𝑇𝑦)} ∀ 𝑥, 𝑦 ∈ 𝑋, 0 < 𝑘 < 1  

(iii) The pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible,  

If the pairs (𝐴, 𝑆) satisfy the (CLRa) property or the pair(𝐵, 𝑇) satisfy the (CLRb) 

property, then mappings 𝐴, 𝐵, 𝑆, and 𝑇 have a unique common fixed point in X.  

If the range of one of the mappings 𝑆(𝑋) or  𝑇(𝑋) is a complete subspace of X, then 

mappings A, B, S, and T have a unique common fixed point in X.”  

We expand the previously presented theorems A, B, and C/results into the realm of CVFMS 

as outlined below.  

Theorem -3.1.  Let (𝜒, 𝑀,∗) be a CVFMS with 𝑙𝑖𝑚𝑡→∞ 𝑀(𝜆, 𝜇, 𝑡) = 𝑒𝑖𝜃,  ∀ 𝜆, 𝜇 ∈ 𝜒 , 𝑡 ∈ (0, 

∞) and 𝐴, 𝐵, 𝑆, 𝑇 ∶ 𝜒 → 𝜒 be mappings satisfying:   

(i) 𝐴(𝜒) ⊆ 𝑇(𝜒), 𝐵(𝜒) ⊆ 𝑆(𝜒)   

(ii) 𝑀(𝐴𝜆, 𝐵𝜇, 𝑘𝑡) ≳ min{ 𝑀(𝑆𝜆, 𝑇𝜇, 𝑡), 𝑀(𝐵𝜇, 𝑆𝜆, 𝑡), 𝑀(𝐵𝜇, 𝑇𝜇, 𝑡)} , for  0 < 𝑘 < 1                           

(iii) (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible,  

(iv) Either (A, S) or (B, T) fulfills the condition (E.A.).  

If either the range of S (𝜒) or T (𝜒) encompasses a complete subspace of 𝜒, then A, B, S, and 

T possess a unique fixed point within 𝜒.  

Theorem -3.2.  Let (𝜒, 𝑀,∗) be a CVFMS with 𝑙𝑖𝑚𝑡→∞ 𝑀(𝜆, 𝜇, 𝑡) = 𝑒𝑖𝜃, ∀ 𝜆, 𝜇 ∈ 𝜒 , 𝑡 ∈ (0, 

∞) and 𝐴, 𝐵, 𝑆, 𝑇 ∶ 𝜒 → 𝜒 be mappings satisfying:   

(v) 𝐴(𝜒) ⊆ 𝑇(𝜒) or 𝐵(𝜒) ⊆ 𝑆(𝜒)  

(vi) 𝑀(𝐴𝜆, 𝐵𝜇, 𝑘𝑡) ≳ min{ 𝑀(𝑆𝜆, 𝑇𝜇, 𝑡), 𝑀(𝐵𝜇, 𝑆𝜆, 𝑡), 𝑀(𝐵𝜇, 𝑇𝜇, 𝑡)} , for  0 < 𝑘 < 1                        

(vii) (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible,  
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If either the pair (𝐴, 𝑆) meets the 𝐶𝐿𝑅𝐴  property or the pair(𝐵, 𝑇) adheres to the  𝐶𝐿𝑅𝐵  

property, then mappings A, B, S, and T possess a unique common fixed point within 𝜒.  

Proof (Theorem 3.1):  

As (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible,  ∃ coincidence points 𝜆, 𝜇 ∈ 𝜒 such that 𝐴𝜆 = 𝑆𝜆 

implies 𝐴𝑆𝜆 = 𝑆𝐴𝜆, and 𝐵𝜇 = 𝑇𝜇 implies 𝐵𝑇𝜇 = 𝑇𝐵𝜇.  

Now by condition (ii)   

𝑀(𝐴𝜆, 𝐵𝜇, 𝑘𝑡) ≳ min{ 𝑀(𝑆𝜆, 𝑇𝜇, 𝑡), 𝑀(𝐵𝜇, 𝑆𝜆, 𝑡), 𝑀(𝐵𝜇, 𝑇𝜇, 𝑡)}  

= min{ 𝑀(𝐴𝜆, 𝐵𝜇, 𝑡), 𝑀(𝐵𝜇, 𝐴𝜆, 𝑡), 𝑀(𝐵𝜇, 𝐵𝜇, 𝑡)}  

= min{ 𝑀(𝐴𝜆, 𝐵𝜇, 𝑡), 𝑀(𝐵𝜇, 𝐴𝜆, 𝑡), 𝑒𝑖𝜃} = 𝑀(𝐴𝜆, 𝐵𝜇, 𝑡)  

Which implies that 𝐴𝜆 = 𝐵𝜇 , and therefore 𝐴𝜆 = 𝑆𝜆 = 𝐵𝜇 = 𝑇𝜇 … (1)  

Now, let 𝜈 be another coincidence point of  (𝐴, 𝑆) then 𝐴𝜈 = 𝑆𝜈 and so it implies 𝐴𝑆𝜈 = 𝑆𝐴𝜈 

Again by (ii) we have   

𝑀(𝐴𝜈, 𝐵𝜇, 𝑘𝑡) ≳ min{ 𝑀(𝑆𝜈, 𝑇𝜇, 𝑡), 𝑀(𝐵𝜇, 𝑆𝜈, 𝑡), 𝑀(𝐵𝜇, 𝑇𝜇, 𝑡)}  

= min{ 𝑀(𝐴𝜈, 𝐵𝜇, 𝑡), 𝑀(𝐵𝜇, 𝐴𝜈, 𝑡), 𝑀(𝐵𝜇, 𝐵𝜇, 𝑡)}  

= min{ 𝑀(𝐴𝜈, 𝐵𝜇, 𝑡), 𝑀(𝐵𝜇, 𝐴𝜈, 𝑡), 𝑒𝑖𝜃} = 𝑀(𝐴𝜈, 𝐵𝜇, 𝑡)  

Which implies that  𝐴𝜈 = 𝐵𝜇 , and therefore 𝐴𝜈 = 𝑆𝜈 = 𝐵𝜇 = 𝑇𝜇 … (2)  

By (1) and (2) we have  𝐴𝜆 = 𝐴𝜈, which shows that (𝐴, 𝑆) possesses a unique point of 

coincidence 𝜙 = 𝐴𝜆 = 𝑆𝜆, thus (𝐴, 𝑆) possesses a unique fixed point 𝜙.    

Similarly, we can show the pair (𝐵, 𝑇) possesses a unique fixed point.   

Suppose the fixed point is 𝜓 ∈ 𝜒.  

Now, by condition (vi)   

𝑀(𝐴𝜙, 𝐵𝜓, 𝑘𝑡) = 𝑀(𝜙, 𝜓, 𝑘𝑡) ≳ min{ 𝑀(𝑆𝜙, 𝑇𝜓, 𝑡), 𝑀(𝐵𝜓, 𝑆𝜙, 𝑡), 𝑀(𝐵𝜓, 𝑇𝜓, 𝑡)}  

≳ min{ 𝑀(𝐴𝜙, 𝐵𝜓, 𝑡), 𝑀(𝐵𝜓, 𝐴𝜙, 𝑡), 𝑀(𝐵𝜓, 𝐵𝜓, 𝑡)}  

≳ min{ 𝑀(𝐴𝜙, 𝐵𝜓, 𝑡), 𝑀(𝐵𝜓, 𝐴𝜙, 𝑡), 𝑒𝑖𝜃}  

≳ min{ 𝑀(𝜙, 𝜓, 𝑡), 𝑀(𝜓, 𝜙, 𝑡), 𝑒𝑖𝜃} = 𝑀(𝜙, 𝜓, 𝑡) This 

implies that 𝜙 = 𝜓.  

Hence 𝐴, 𝐵, 𝑆, and 𝑇 possess a common fixed point 𝜙.  

For uniqueness: Let us consider,  𝜏 is another common fixed point of 𝐴, 𝐵, 𝑆, and 𝑇.  



2024 406(12 )

205

𝑀(𝐴𝜙, 𝐵𝜏, 𝑘𝑡) = 𝑀(𝜙, 𝜏, 𝑘𝑡) ≳ min{ 𝑀(𝑆𝜙, 𝑇𝜏, 𝑡), 𝑀(𝐵𝜏, 𝑆𝜙, 𝑡), 𝑀(𝐵𝜏, 𝑇𝜏, 𝑡)}  

≳ min{ 𝑀(𝐴𝜙, 𝐵𝜏, 𝑡), 𝑀(𝐵𝜏, 𝐴𝜙, 𝑡), 𝑀(𝐵𝜏, 𝐵𝜏, 𝑡)}  

≳ min{ 𝑀(𝐴𝜙, 𝐵𝜏, 𝑡), 𝑀(𝐵𝜏, 𝐴𝜙, 𝑡), 𝑒𝑖𝜃}  

≳ min{ 𝑀(𝜙, 𝜏, 𝑡), 𝑀(𝜏, 𝜙, 𝑡), 𝑒𝑖𝜃} = 𝑀(𝜙, 𝜏, 𝑡) This 

implies that 𝜙 = 𝜏.  

Hence, 𝐴, 𝐵, 𝑆, and 𝑇 possess a unique and common fixed point.  

Example 3.1.  

Let 𝜒 = 𝑅 . Consider the metric 𝑑(𝜆, 𝜇) = |𝜆 − 𝜇|. Let 𝜉 ∗ 𝜁 = min {𝜉, 𝜁}, 𝜉, 𝜁 ∈ ℂ .  

∀ 𝑡 > 0, and 𝜆, 𝜇 ∈ 𝜒, we define: 𝑀(𝜆, 𝜇, 𝑡) = 
𝑒𝑖𝜃

1+ 
d(λ,μ)

𝑡

 

 

Clearly (𝜒, 𝑀,∗) is CVFMS, and 𝑙𝑖𝑚𝑡→∞ 𝑀(𝜆, 𝜇, 𝑡) = 𝑒𝑖𝜃 

 

Now, let 𝐴, 𝐵, 𝑆, and 𝑇 be self-maps, defined as 𝐴𝜆 =
2λ

3
  , 𝐵𝜆 = 

λ

2
 , 𝑆𝜆 = 2𝜆, and 𝑇𝜆 = 𝜆. 

 

 𝑀 (𝐴𝜆, 𝐵𝜇, 
𝑡

2
)=

t
2

eiθ

t
2

+d(Aλ,bμ)
  

 

𝑀 (𝐴𝜆, 𝐵𝜇,
𝑡

2
)= 

t
2

eiθ

t
2

+|Aλ − Bμ|
 

= 
t
2

eiθ

t
2

+|2λ/3 − μ/2|
 

= 
t
2

eiθ

t
2

+|Sλ/3 − Tμ/2|
 

= 
teiθ

t+2|Sλ/3 − Tμ|
 

≳ 
teiθ

t+|Sλ− Tμ|
 

≳ 𝑀(𝑆𝜆, 𝑇𝜇, 𝑡) 

 

If 𝜆 = 𝜇  then  𝑀 (𝐴𝜆, 𝐵𝜇, 
𝑡

2
) = 𝑀(𝑆𝜆, 𝑇𝜇, 𝑡)  

Hence, 𝑀(𝐴𝜆, 𝐵𝜇, 𝑘𝑡) ≳ min{ 𝑀(𝑆𝜆, 𝑇𝜇, 𝑡), 𝑀(𝐵𝜇, 𝑆𝜆, 𝑡), 𝑀(𝐵𝜇, 𝑇𝜇, 𝑡)} for all 𝜆, 𝜇 ∈ 𝜒, 𝑡 ∈ 

(0, ∞)  and 0 < 𝑘 < 1   
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Therefore, the maps 𝐴, 𝐵, 𝑆, and 𝑇 satisfy the condition (ii) of theorem 3.1 for k = ½.   

Moreover, 0 is the common fixed point of the maps. Consequently, all the requirements 

outlined in theorem 3.1 are met.                                                                                                                             

Proof (Theorem 3.2): Suppose  (𝐵, 𝑇) satisfies the (𝐶𝐿𝑅𝐵) property, then ∃ {𝑥𝑛} in 𝜒 such 

that  𝑙𝑖𝑚𝑛→∞ 𝐵𝑥𝑛 = 𝑙𝑖𝑚𝑛→∞ 𝑇𝑥𝑛 = 𝐵𝜆  for some 𝜆 ∈ 𝜒. As 𝐵(𝜒) ⊆ 𝑆(𝜒), we have 𝐵𝜆 = 𝑆𝜏 for 

some 𝜏 ∈ 𝜒.  

We claim that 𝐴𝜏 = 𝑆𝜏 (= 𝜌) say. Suppose it is not true then by condition (vi) we have:  

𝑀(𝐴𝜏, 𝐵𝑥𝑛, 𝑘𝑡) ≳ min{ 𝑀(𝑆𝜏, 𝑇𝑥𝑛, 𝑡), 𝑀(𝐵𝑥𝑛, 𝑆𝜏, 𝑡), 𝑀(𝐵𝑥𝑛, 𝑇𝑥𝑛, 𝑡)}  ∀ 𝜏 , 𝑥𝑛 ∈ 𝜒, 𝑡 ∈ 

(0, ∞)  and 0 < 𝑘 < 1     

𝑀(𝐴𝜏, 𝐵𝜆, 𝑘𝑡) ≳ min{ 𝑀(𝐵𝜆, 𝐵𝜆, 𝑡), 𝑀(𝐵𝜆, 𝐵𝜆, 𝑡), 𝑀(𝐵𝜆, 𝐵𝜆, 𝑡)}   

𝑀(𝐴𝜏, 𝐵𝜆, 𝑘𝑡) ≳ min{ 𝑒𝑖𝜃, 𝑒𝑖𝜃, 𝑒𝑖𝜃}  

𝑀(𝐴𝜏, 𝐵𝜆, 𝑘𝑡) ≳ 𝑒𝑖𝜃  

Which is a contradiction, thus 𝐴𝜏 = 𝑆𝜏 (= 𝜌). Hence, 𝐴𝜏 = 𝑆𝜏 = 𝐵𝜆 = 𝜌.  

Thus, 𝜏 is a coincidence point of (𝐴, S).  

As given (𝐴, 𝑆) is weak compatible, so  𝐴𝑆𝜏 = 𝑆𝐴𝜏 = 𝐴𝜌 = 𝑆𝜌.  

As given 𝐴(𝜒) ⊆ 𝑇(𝜒), so ∃ 𝜓 ∈ 𝜒 such that 𝐴𝜏 = 𝑇𝜓  

Now, we claim that 𝐵𝜓 = 𝜌.   

𝑀(𝐴𝜆, 𝐵𝜇, 𝑘𝑡) ≳ min{ 𝑀(𝑆𝜆, 𝑇𝜇, 𝑡), 𝑀(𝐵𝜇, 𝑆𝜆, 𝑡), 𝑀(𝐵𝜇, 𝑇𝜇, 𝑡)} ∀ 𝜆, 𝜇 ∈ 𝜒, 𝑡 ∈ (0, ∞)  and  

0 < 𝑘 < 1                                                                                                                                                    

 𝑀(𝐴𝜏, 𝐵𝜓, 𝑘𝑡) ≳ min{ 𝑀(𝑆𝜏, 𝑇𝜓, 𝑡), 𝑀(𝐵𝜓, 𝑆𝜏, 𝑡), 𝑀(𝐵𝜓, 𝑇𝜓, 𝑡)}  

𝑀(𝐴𝜏, 𝐵𝜓, 𝑘𝑡) ≳ min{ 𝑀(𝜌, 𝜌, 𝑡), 𝑀(𝐵𝜓, 𝐴𝜏, 𝑡), 𝑀(𝐵𝜓, 𝐴𝜏, 𝑡)}  

𝑀(𝐴𝜏, 𝐵𝜓, 𝑘𝑡) ≳ min{ 𝑒𝑖𝜃, 𝑀(𝐵𝜓, 𝐴𝜏, 𝑡), 𝑀(𝐵𝜓, 𝐴𝜏, 𝑡)}  

𝑀(𝐴𝜏, 𝐵𝜓, 𝑘𝑡) ≳ 𝑀(𝐵𝜓, 𝐴𝜏, 𝑡)  

Which implies that  𝐴𝜏 = 𝐵𝜓 = 𝜌  

Hence 𝐴𝜏 = 𝑆𝜏 = 𝜌 = 𝐵𝜓 = 𝑇𝜓.  

Which shows that 𝜓 is a coincidence point of (𝐵, T).  

As  (𝐵, 𝑇) is weak compatible, so 𝐵𝑇𝜓 = 𝑇𝐵𝜓 = 𝐵𝜌 = 𝑇𝜌. Thus, 𝜌 is a common coincidence 

point of (𝐴, 𝑆) and (𝐵, 𝑇).  
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Now consider 𝜌 as a unique and common fixed point of 𝐴, 𝐵, 𝑆, and T.  

𝑀(𝐴𝜏, 𝐵𝜌, 𝑘𝑡) ≳ min{ 𝑀(𝑆𝜏, 𝑇𝜌, 𝑡), 𝑀(𝐵𝜌, 𝑆𝜏, 𝑡), 𝑀(𝐵𝜌, 𝑇𝜌, 𝑡)}  

𝑀(𝜌, 𝐵𝜌, 𝑘𝑡) ≳ min{ 𝑀(𝜌, 𝐵𝜌, 𝑡), 𝑀(𝐵𝜌, 𝜌, 𝑡), 𝑀(𝐵𝜌, 𝐵𝜌, 𝑡)}  

𝑀(𝜌, 𝐵𝜌, 𝑘𝑡) ≳ min{ 𝑀(𝜌, 𝐵𝜌, 𝑡), 𝑀(𝐵𝜌, 𝜌, 𝑡), 𝑒𝑖𝜃}  

𝑀(𝜌, 𝐵𝜌, 𝑘𝑡) ≳ 𝑀(𝜌, 𝐵𝜌, 𝑡) Which 

implies that 𝜌 = 𝐵𝜌.  

Thus, 𝐴𝜌 = 𝐵𝜌 = 𝑆𝜌 = 𝑇𝜌 = 𝜌.  

Hence, 𝐴, 𝐵, 𝑆, and 𝑇 possess a common fixed point 𝜌. The distinctiveness of the fixed point 

can be readily deduced.  

Conclusion  

This study revolves around extending conclusions drawn from complete metric spaces (MS) to 

CVFMS, a process that has been demonstrated to yield accurate outcomes. By introducing a 

novel adaptation of the less stringent contractive condition, we examined the extended 

rendition of the outcome. A complex-valued fuzzy version of Banach contraction principles has 

been proved. Bolstering our arguments, we have included an illustrative example that 

substantiates our hypotheses and supports our central breakthrough. Within the context of 

CVFMS, many comprehensive metric space results can be broadened and visually presented 

along this trajectory.  
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